

Malta[™] User's Manual

Document Number: MD00048 Revision 01.06 July 1, 2007

MIPS Technologies, Inc. 1225 Charleston Road Mountain View, CA 94043-1353

Copyright © 2000-2007 MIPS Technologies Inc. All rights reserved.

Copyright © 2000-2007 MIPS Technologies, Inc. All rights reserved.

Unpublished rights (if any) reserved under the copyright laws of the United States of America and other countries.

This document contains information that is proprietary to MIPS Technologies, Inc. ("MIPS Technologies"). Any copying, reproducing, modifying or use of this information (in whole or in part) that is not expressly permitted in writing by MIPS Technologies or an authorized third party is strictly prohibited. At a minimum, this information is protected under unfair competition and copyright laws. Violations thereof may result in criminal penalties and fines.

Any document provided in source format (i.e., in a modifiable form such as in FrameMaker or Microsoft Word format) is subject to use and distribution restrictions that are independent of and supplemental to any and all confidentiality restrictions. UNDER NO CIRCUMSTANCES MAY A DOCUMENT PROVIDED IN SOURCE FORMAT BE DISTRIBUTED TO A THIRD PARTY IN SOURCE FORMAT WITHOUT THE EXPRESS WRITTEN PERMISSION OF MIPS TECHNOLOGIES, INC.

MIPS Technologies reserves the right to change the information contained in this document to improve function, design or otherwise. MIPS Technologies does not assume any liability arising out of the application or use of this information, or of any error or omission in such information. Any warranties, whether express, statutory, implied or otherwise, including but not limited to the implied warranties of merchantability or fitness for a particular purpose, are excluded. Except as expressly provided in any written license agreement from MIPS Technologies or an authorized third party, the furnishing of this document does not give recipient any license to any intellectual property rights, including any patent rights, that cover the information in this document.

The information contained in this document shall not be exported, reexported, transferred, or released, directly or indirectly, in violation of the law of any country or international law, regulation, treaty, Executive Order, statute, amendments or supplements thereto. Should a conflict arise regarding the export, reexport, transfer, or release of the information contained in this document, the laws of the United States of America shall be the governing law.

The information contained in this document constitutes one or more of the following: commercial computer software, commercial computer software documentation or other commercial items. If the user of this information, or any related documentation of any kind, including related technical data or manuals, is an agency, department, or other entity of the United States government ("Government"), the use, duplication, reproduction, release, modification, disclosure, or transfer of this information, or any related documentation of any kind, is restricted in accordance with Federal Acquisition Regulation 12.212 for civilian agencies and Defense Federal Acquisition Regulation Supplement 227.7202 for military agencies. The use of this information by the Government is further restricted in accordance with the terms of the license agreement(s) and/or applicable contract terms and conditions covering this information from MIPS Technologies or an authorized third party.

MIPS I, MIPS II, MIPS II, MIPS IV, MIPS V, MIPS-3D, MIPS 16, MIPS 16e, MIPS 32, MIPS 64, MIPS-Based, MIPSsim, MIPSpro, MIPS Technologies logo, MIPS-VERIFIED, MIPS-VERIFIED logo, 4K, 4Kc, 4Km, 4Kp, 4KE, 4KEc, 4KEm, 4KEp, 4KS, 4KSc, 4KSd, M4K, 5K, 5Kc, 5Kf, 24K, 24Kc, 24KE, 24KEc, 24KEc, 24KEc, 24KEc, 34K, 34Kc, 34Kf, 74Kc, 74Kf, R3000, R4000, R5000, ASMACRO, Atlas, "At the core of the user experience.", BusBridge, Bus Navigator, CLAM, Corextend, CoreFPGA, CoreLV, EC, FPGA View, FS2, FS2 FIRST SILICON SOLUTIONS logo, FS2 NAVIGATOR, HyperDebug, HyperJTAG, JALGO, Logic Navigator, Malta, MDMX, MED, MGB, OCI, PDtrace, the Pipeline, Pro Series, SEAD, SEAD-2, SmartMIPS, SOC-it, System Navigator, and YAMON are trademarks or registered trademarks of MIPS Technologies, Inc. in the United States and other countries.

All other trademarks referred to herein are the property of their respective owners.

Template: nB1.03, Built with tags: 2B

Table of Contents

Chapter 1: Introduction	7
1.1: Overview	
Chapter 2: Getting Started	11
2.1: Required Hardware	
2.2: Optional Hardware	
2.3: Wiring It Up	
2.4: Power-up Sequence	
Chapter 3: Memory Map	
3.1: Revision Information	
3.2: NMI Interrupts	
3.3: NMI Acknowledge	
3.4: Switches / Status	
3.5: Displays	
3.6: Reset Control	
3.7: CBUS UART, tty2	
3.8: General Purpose I/O	
3.9: I2C	
Chapter 4: Board Layout	
4.1: Connectors & Jumpers	
4.2: Switches	
4.3: Displays / LEDs	
Chapter 5: Hardware Description	
5.1: PCI Bus	
5.1.1: PCI Arbiter	
5.2: I2C Bus	
5.3: Power	
5.4: Reset	
5.5: Clocks	
5.6: Interrupt Controller	
5.7: Serial Ports	
5.7.1: File Download	
5.7.2: Serial Port Reset	
5.9: USB 5.10: Keyboard / Mouse / IEEE1284 Parallel Port / Floppy Disk	
5.11: Real Time Clock (RTC) 5.12: IDE/CompactFlash (True IDE Mode)	
5.12: IDE/CompactFlash (True IDE Mode) 5.13: Flash Memory	
5.13: Flash Memory	
5.14. EEPROM 5.15: AMR (Audio Modem Riser)	
5.15. AMR (Addio Modern Riser)	
5.17: Debug Access	
0.11. Dobug Access	

5.17.1: Software Debug	
5.17.2: Hardware Debug	
Chapter 6: 1284 Flash Download Format	45
Chapter 6: 1264 Flash Download Format	
Chapter 7: Core Card Design	
7.1: Required Interfaces	
7.1.1: Power	
7.1.2: PCI Bus	
7.1.3: Clock	
7.1.4: Revision Number	
7.1.5: I2C bus	
7.1.6: Interrupts	
7.1.7: Endian	
7.1.8: CBUS	
7.1.9: EJTAG	51
7.1.10: Misc	51
7.2: Signals	
7.2.1: J3 Connector	
7.2.2: J4 Connector	
7.3: Physical Design	

List of Figures

Figure 1.1: Malta TM Development Platform Block Diagram	
Figure 4.1: Malta Board Layout	
Figure 4.2: Rear Panel Connector Layout	
Figure 5.1: PCI Arbiter Connections	
Figure 5.2: Interrupt Wiring	
Figure 5.3: Front Panel Connector	
Figure 7.1: CBUS Read Cycle	
Figure 7.2: CBUS Write Cycle	
Figure 7.3: J3 and J4 Alignment	
Figure 7.4: Core Card Template Layout	

List of Tables

Table 3.1: Malta Physical Memory Map	. 13
Table 3.2: I2C Slave Address Map	. 14
Table 3.3: REVISION Register	. 14
Table 3.4: NMISTATUS Register	
Table 3.5: NMIACK Register	. 15
Table 3.6: SWITCH Register	. 16
Table 3.7: STATUS Register	
Table 3.8: JMPRS Register	. 17
Table 3.9: Display Registers. BASE = 0x1F00.0400	
Table 3.10: LEDBAR Register	
Table 3.11: ASCIIWORD Register	
Table 3.12: ASCIIPOS0-7 Registers	
Table 3.13: SOFTRES Register	
Table 3.14: BRKRES Register	
Table 3.15: UART Registers. BASE = 0x1F00.0900	
Table 3.16: GPOUT Register	
Table 3.17: GPINP Register	
Table 3.18: I2CINP Register	
Table 3.19: I2COE Register	
Table 3.20: I2COUT Register	
Table 3.21: I2CSEL Register	
Table 4.1: Interface Connectors	
Table 4.2: Jumpers	
Table 4.3: Switches	
Table 4.4: LEDs	
Table 4.5: Ethernet Connector LED Functionality	
Table 5.1: IDSEL and INT# for PCI Devices	
Table 5.2: IRQ 015 Mapping	
Table 5.3: CPU INT05 and CPU NMI Mapping	
Table 5.4: Serial Port Pinouts	
Table 5.5: Testpoints	
Table 5.6: Logic Analyser Connectors	
Table 6.1: Download Codes	
Table 6.2: Flash Download Error Messages	
Table 7.1: CBUS AC Timing Parameters	
Table 7.2: Core Card Interface Signals	
Table 7.3: J3 Pin List	
Table 7.4: J4 Pin List	
Table 7.5: Core Card Component Height Restrictions	. 57

Chapter 1

Introduction

This document is the primary reference document for the Malta[™] Development Board.

1.1 Overview

The Malta Board provides a standard platform for software development with MIPS32® and MIPS64® processors. The platform is composed of two parts: the Malta Motherboard, which holds the CPU-independent parts of the circuitry, and one or more CoreLV or CoreFPGA Core boards, which hold the MIPS CPU plus its System Controller and fast SDRAM memory.

The Malta Board is designed around a standard PC chipset, which provides all the advantages of easy-to-obtain software drivers. It is supplied with the YAMON ROM monitor in the on-board Flash memory, which can be reprogrammed from a PC or workstation via the IEEE1284 port. The feature set extends from low-level debugging aids, such as DIP switches, LED displays, and logic analyzer connectors, to sophisticated EJTAG debugger connectivity, audio support, IDE. flash disks and Ethernet. Four PCI slots on the board give the user a high degree of flexibility in extending the functionality of the system. The board is an ATX form factor and is intended to be used in an ATX cabinet.

The major components of the Malta Board are shown in Figure 1.1 and listed below:

- ATX form factor
- Daughter card hosting either an FPGA implementation of a synthesizable core or a Lead Vehicle
- 100 Mbps Ethernet
- 4 PCI slots
- Audio modem riser connector
- Serial, parallel, USB, keyboard, mouse ports
- IDE and compact flash slots
- 4 Mbytes boot Flash
- 64 Mbytes SDRAM
- EJTAG v2.5 debugger connector
- YAMONTM ROM monitor included

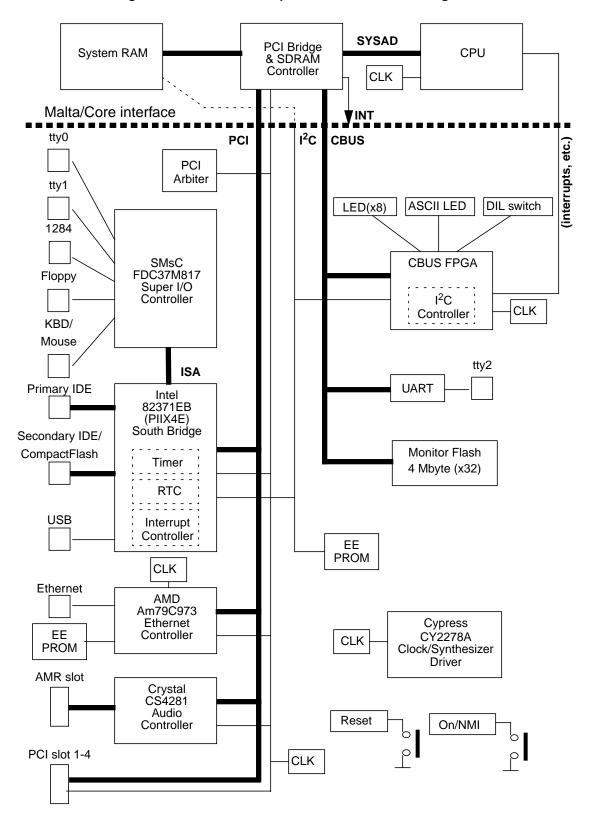


Figure 1.1 Malta[™] Development Platform Block Diagram

The Core board shown in Figure 1.1 is a typical implementation. Though the Core Board is not strictly within the scope of this document, it is worth noting that all Core Boards conform to the same interface specification, which is described in Chapter 7, "Core Card Design" on page 49. Also worth noting is that most Core Boards generate their own clock, independently of the PCI clock. Nothing on Malta is synchronized to the Core Board clock—the CBUS protocol is asynchronous by nature. The CBUS allows the CPU to access peripherals, which either have to be available before the PCI bus has been configured (for example, the Flash memory from which it boots) or those that require simple, low-latency access (for example, the debug LEDs and ASCII display, the tty2 port. and so on).

The PCI bus is 32-bit, 33 MHz PCI standard version 2.2 compliant (Reference [1]), and allows devices on the bus DMA access to the DRAM on the Core Board. Four 5V PCI slots are provided on Malta to allow insertion of optional peripherals (for example, a video controller), and also to provide a way of monitoring traffic on this bus. The PCI bus contains the following components:

- Core Board connector for connection to the system controller on the Core Board.
- Intel PIIX4E South Bridge, 82371E (U9).
- AMD Ethernet controller, Am79C973 (U41).
- Crystal Audio controller, CS4281 (U23).
- Four 5V, 32 bit PCI connectors (J12-J15) that can be used for debug / trace purposes or for installation of a PCI board.

The Malta Board has a PC-like structure with a South Bridge. An ISA bus is attached to the South Bridge for connection with the Super I/O (U11). The Super I/O contains the following components:

- PS/2 Keyboard and Mouse (J7).
- 1284 parallel port (J6).
- Two serial ports tty0 and tty1 (J6).
- Floppy drive, only drive A supported (J21).

The Monitor Flash is used to boot the system.

In addition to the YAMON monitor, the Malta Board includes a sample Linux port. BSPs for Microsoft® Windows® CE, Nucleus Plus, and Windriver Systems VxWorks are also available.

Introduction

Chapter 2

Getting Started

2.1 Required Hardware

In addition to the basic Malta motherboard, you will typically need:

- a suitable standard ATX cabinet with power supply. For a power supply with stand-by capabilities, a minimum current of 720 mA is required (1A/1.5A peak recommended) for the 5V stand-by voltage.
- the Core Board that contains the MIPS CPU.
- a serial cable for RS232 serial connection. The cable must be a Null Modem cable with 9 way 'D' female connector in both ends.

2.2 Optional Hardware

The following may also be useful, depending on your application:

- Ethernet cable
- USB cable
- PS2 Keyboard / mouse
- IDE disk drive and cabling
- Type I or II CompactFlash module (supporting True IDE mode)
- Floppy disk drive and cabling

The following are useful for debugging:

- LA probe connectors (that match the AMP Mictor headers) if you have an HP Logic Analyser
- PCI probe board, if you want to be able to monitor activity on the internal PCI bus (for example, FuturePlus FS2000)
- Standard parallel-port download cable for extending the parallel male-male conversion cable
- Standard 10-pin header to DB9 converter cable for tty2

2.3 Wiring It Up

Begin by connecting the Core Board to the Malta motherboard. Notice that the connectors J3 and J4 have the same numbers on both boards, and one of the corner mounting pillars is offset to prevent incorrect insertion. When removing the Core Board at some later date, be careful not to bend it. Under each corner of the Core Board is a mounting pillar, with a gap where a screwdriver can be inserted to gently lever it up. Only apply the screwdriver to the PCB area around the mounting holes to avoid accidently cutting any tracks.

Before turning on the power, you will probably want to have set up the following:

- tty0. The supplied PROM monitor (YAMON) by default prints its welcome message via the tty0 port (J6), using 38.4 kbaud, 8 bits/char, RTS/CTS hardware handshaking, without parity. A 5-wire cable is sufficient. The implemented signals must be RXD, TXD, RTS, CTS, and GND. See Section 5.7, "Serial Ports" for the serial connector pinout.
- Ethernet. Twisted-pair ethernet cable will plug into the socket on the rear edge of the board. This will auto configure at 10 or 100Mbit/s, half/full-duplex.
- Check that the settings of S5 switches are correct, as specified in Section 4.2, "Switches".

2.4 Power-up Sequence

When you connect the power supply and switch it on, the board is powered up. Check that the green "ATX ON", "3V3", "5V", and "STBY" LEDs are on, indicating good power.

NOTE: With some ATX supplies, Malta draws so little current that the supply is not stable. This is technically a deviation from the ATX spec.

NOTE: The board is brought into "stand-by" mode by pressing the switch marked "ON/NMI" (S4) for more than four seconds. The "ATX ON" LED is lit when in "stand-by" mode. Press "ON/NMI" to bring up the board again.

The green "FPGA" LED should be on, indicating that the board's FPGA has booted.

The red "RST" LED should be off. If it is lit, it indicates that something is holding the board in reset.

When the CPU initially boots, YAMON signs-on using the tty0 serial port (the left one) with information about the board's configuration, for example, board revision, SDRAM size, etc.

You should now arrive at YAMON's prompt line. Simultaneously, you should see the word "YAMON" on the ASCII LED display. If you do not see this, check the YAMON User's Manual for the meaning of the displayed messages.

Yamon's help command lists the available commands, and help *<command* name> gives more detailed information about a specific command.

The board's default mode is little endian. You can change to big-endian using S5-2, as described in Table 4.3.

Chapter 3

Memory Map

This chapter describes the Malta Board's memory map and its control/status registers as seen by the CPU. The memory map showing the starting addresses of the major devices on the board is shown in Table 3.1.

0000.0000 ^(*)		
	128Mbytes	Typically SDRAM (on Core Board)
0800.0000	256 Mbytes	Typically PCI
1800.0000	62 Mbytes	Typically PCI
1BE0.0000	2 Mbyte	Typically System controller's internal registers
1C00.0000	32 Mbytes	Typically not used
1E00.0000	4 Mbytes	Monitor Flash
1E40.0000	12 Mbytes	Reserved
1F00.0000	12 Mbytes	Switches
		LEDs
		ASCII display
		Soft reset
		FPGA revision number
		CBUS UART (tty2)
		General purpose I/O
		I ² C controller
1F10.0000	11 Mbytes	Typically System Controller specific.
1FC0.0000	4Mbyte	Maps to Monitor Flash
1FD0.0000	3 Mbytes	Typically System Controller specific.

Table 3.1 Malta Physical Memory Map

The memory area 000F.0000-000F.FFFF (PC BIOS area) is only accessible from the CPU and not from the PCI bus (the South Bridge decodes this memory area).

Note: Address 1FC0.0010 in Flash memory is "special"—a read from this address reads the contents of the Revision register, allowing software to identify the hardware environment and configure itself accordingly. The next address, 1E00.0010, decodes to an address in Flash memory.

RAM is typically mapped at the bottom of memory, so that exception vectors are located in fast memory.

Malta does not specify a mapping for addresses above 0x2000.0000. These addresses are accessed via kuseg, using mapping defined by TLB entries.

The I²C bus (called the SMB bus in the Intel documentation) is controlled by the CBUS FPGA (it can also be controlled by the controller in the South Bridge). The I²C bus address map is shown in Table 3.2.

I ² C Slave Address	Size	Function
0x50	256 bytes	Core Board, PC-100 SDRAM
0x51	256 bytes	Core Board, optional PC-100 SDRAM
0x52	256 bytes	Core Board, optional PC-100 SDRAM
0x53	256 bytes	Core Board, optional PC-100 SDRAM
0x54-0x57	1024 bytes	Malta EEPROM - read-only Contains serial number

Table 3.2 I²C Slave Address Map

Note that all addresses shown are physical addresses. You should use the macros in the header files to access all registers and fields [3].

All registers are addressed as 32-bit words, on 64-bit word boundaries. This convention allows software to access all registers using the same word address in both big- and little-endian modes. Those registers that contain a single value are not described in bit-field detail; these values occupy the least-significant bit of the register.

3.1 Revision Information

The Revision register contains information about the revision of the Malta and Core Boards.

Name:	REVISION
Address:	0x1FC0.0010
Access:	RO
Reset Value:	n/a

Table 3.3 REVISION Register

Bits	Field Name	Function	Initial Value
31:24	Reserved	Reserved	0
23:16	FPGRV	8-bit binary number gives revision of CBUS FPGA.	n/a
15:10	CORID	6-bit Core Board ID	n/a
9:8	CORRV	2-bit Core Board revision	n/a

Bits	Field Name	Function	Initial Value
7:4	PROID	4-bit binary number gives product ID	0x2
3:0	PRORV	4-bit binary number gives product revision.	n/a

Table 3.3 REVISION Register (Continued)

3.2 NMI Interrupts

There are two sources of NMI:

- ON/NMI push button
- South Bridge due to assertion of PCI SERR (from PCI slot or Core card) or assertion of ISA IOCHK.

When the ON/NMI push button is activated, the signal is debounced and latched in the NMI interrupt controller. The South Bridge NMI is routed through the NMI controller as it is. These signals then generate an active state on the NMIN pin of the MIPS Core Board. The NMISTATUS register can be read to determine the cause of the NMI.

Name:	NMISTATUS
Address:	0x1F00.0024
Access:	RO
Reset Value:	n/a

Table 3.4 NMISTATUS Register

Bits	Field Name	Function	Initial Value
31:1	Reserved	Reserved	n/a
1	SB	Pending NMI from the South Bridge	n/a
0	ONNMI	Pending NMI from the ON/NMI push button	n/a

3.3 NMI Acknowledge

The ON/NMI interrupt is by nature transient. Therefore it is debounced and latched and thereafter treated as an ordinary level-based interrupt in the NMI interrupt controller. The NMI interrupt can be cleared by writing a "1" to the NMIACK register. Note that South Bridge NMI is acknowledged in the South Bridge.

00.0104

Table 3.5 NMIACK Register

Bits	Field Name	Function	Initial Value
31:1	Reserved	Reserved	n/a

Table 3.5 NMIACK Register

Bits	Field Name	Function	Initial Value
0	ONNMI	Write 1 to acknowledge ON/NMI NMI	n/a

3.4 Switches / Status

The SWITCH, STATUS, and JPMRS registers allow software to monitor the state of various switches and jumpers on the Malta Board. All DIP switches have a value of "1" for a switch in the "ON" position.

A switch is considered ON if any of the following are true:

- It is in the position marked "ON" on the switch body.
- It is in the position marked "CLOSED" or not in the "OPEN" position as marked on the switch body.

There is no debouncing on these registers, so if software wants to monitor a value while it changes, allowance for this must be made by waiting for the new value to become stable.

For the DIP switches S2 & S5, bit 0 is marked by a dot or by a "0" in the silkscreen, or the switch is marked by a "1".

Name:	SWITCH
Address:	0x1F00.0200
Access:	RO
Reset Value:	n/a

Bits	Field Name	Function	Initial Value
31:8	Reserved	Reserved	0
7:0	S2	8-bit value of the setting of DIP switch S2.	n/a

Table 3.6 SWITCH Register

Name:	STATUS
Address:	0x1F00.0208
Access:	RO
Reset Value:	n/a

Table 3.7 STATUS Register

Bits	s Field Name	Function	Initial Value
31:5	Reserved	Reserved	0
4	MFWR	"1" indicates Monitor Flash lock bits are write protected (JP1 fitted).	n/a

Bits	Field Name	Function	Initial Value
3	\$54	DIP switch S5-4. YAMON use this switch. "1" will set YAMON in factory default mode (communication on tty0, etc.).	n/a
2	S53	DIP switch S5-3	n/a
1	BIGEND	"1" indicates big endian mode, as controlled by switch S5-2.	n/a
0	Reserved	Reserved	0

Table 3.7 STATUS Register (Continued)

Name:	JMPRS
Address:	0x1F00.0210
Access:	RO
Reset Value:	n/a

Table 3.8 JMPRS Register

Bits	Field Name	Function	Initial Value
31:5	Reserved	Reserved	0
4:2	PCICLK	PCI clock frequency 10-37.5MHZ See Table 4.2 Bit 4 is Pins 5-6 Bit 3 is Pins 3-4 Bit 2 is Pins 1-2 "1" = jumper fitted	n/a
1	EELOCK	State of JP2: Not fitted ~ "1" = I^2C EEPROM write protected.	n/a
0	Reserved	Reserved	0

3.5 Displays

There are 2 display devices on the board: an 8-LED array (D28 is a 10-LED, but only 8 are used), and an 8-character ASCII display (U42). These are controlled using the registers shown in Table 3.9 through Table 3.12.

Register Name	Offset Address	Access	Function
LEDBAR	0x0000.0008	R/W	8 bits each corresponding to 1 LED. 1 = ON
ASCIIWORD	0x0000.0010	WO	Writing a 32-bit word to this register will cause it to be displayed in hex on the ASCII character display.

Register Name	Offset Address	Access	Function
ASCIIPOS0	0x0000.0018	WO	Writing an ASCII value to this regis- ter updates ASCII display position '0', which is the left-most positioned character.
ASCIIPOS1	0x0000.0020	WO	Writing an ASCII value to this regis- ter updates ASCII display position '1'.
ASCIIPOS2	0x0000.0028	WO	Writing an ASCII value to this regis- ter updates ASCII display position '2'.
ASCIIPOS3	0x0000.0030	WO	Writing an ASCII value to this register updates ASCII display position '3'.
ASCIIPOS4	0x0000.0038	WO	Writing an ASCII value to this regis- ter updates ASCII display position '4'.
ASCIIPOS5	0x0000.0040	WO	Writing an ASCII value to this regis- ter updates ASCII display position '5'.
ASCIIPOS6	0x0000.0048	WO	Writing an ASCII value to this regis- ter updates ASCII display position '6'.
ASCIIPOS7	0x0000.0050	WO	Writing an ASCII value to this regis- ter updates ASCII display position '7', which is the right-most posi- tioned character.

Name:	LEDBAR
Address:	0x1F00.0408
Access:	R/W
Reset Value:	0x00

Table 3.10 LEDBAR Register

Bits	Field Name	Function	Initial Value
31:8	Reserved	Reserved	0
7:0	BAR	8 bits each corresponding to 1 LED $(1 = ON)$	0x00

Name:	ASCIIWORD
Address:	0x1F00.0410
Access:	WO
Reset Value:	n/a

Bits	Field Name	Function	Initial Value
31:0	HEX	Writing a 32-bit word to this register will cause it to be displayed in hex on the ASCII character display.	n/a

Table 3.11 ASCIIWORD Register

Name:	ASCIIPOS0
Address:	0x1F00.0418
Access:	WO
Reset Value:	n/a

Table 3.12 ASCIIPOS0-7 Registers

Bits	Field Name	Function	Initial Value
31:8	Reserved	Reserved	n/a
7:0	ASCII	Writing an ASCII value to this register updates ASCII display position '0'. Position '0' is the left-most positioned character.	n/a

3.6 Reset Control

There are two reset functionalities that are controlled by software: writing a "magic" value to the SOFTRES register immediately triggers a reset of the whole board, and the BRKRES register controls how the "break" condition on the tty0 port is monitored. Both reset functions generate a board reset with the exact same effect as if you had pressed the reset button.

Name:	SOFTRES
Address:	0x1F00.0500
Access:	WO
Reset Value:	0x00

Table 3.13 SOFTRES Register

Bits	Field Name	Function	Initial Value
31:8	Reserved	Reserved	n/a
7:0	RESET	Writing the magic value GORESET (==0x42) to this field will initiate a board reset	0x00

Name:	BRKRES
Address:	0x1F00.0508
Access:	R/W

Reset Value: 0x0A

Bits	Field Name	Function	Initial Value
31:8	Reserved	Reserved	0
7:0	WIDTH	Writing a value to this address indicates the number of milliseconds in length a "Break" must be on the tty0 port in order to trigger a reset. Valid values are from 0 to 255. A value of zero prevents this reset ever occur- ring.	0x0A (i.e., 10ms)

Table 3.14 BRKRES Register

NOTE: The initial value for WIDTH of 10 ms will cause problems, if the baud rate of the tty0 port is less than 2400 Baud. If baud rates below 2400 Baud are used, this register must be programmed with a larger value.

3.7 CBUS UART, tty2

For details on programming the CBUS UART (TI 16C550C), see the data sheet from Texas Instruments [10]. The clock frequency for baud rate calculations is 3.6864 MHz.

The UART registers of the UART are 8 bits wide and mapped on 64-bit aligned boundaries. These registers are described in Table 3.15.

Name	Offset Address	Access	Function
RXTX	0x0000.0000	R/W	Receive / Transmit char register
INTEN	0x0000.0008	R/W	Interrupt enable register
IIFIFO	0x0000.0010	R/W	Read: Interrupt identification Write: FIFO control
LCTRL	0x0000.0018	R/W	Line control register ¹
MCTRL	0x0000.0020	R/W	Modem control register
LSTAT	0x0000.0028	R/W	Line status register
MSTAT	0x0000.0030	R/W	Modem status register
SCRATCH	0x0000.0038	R/W	Scratch register

Table 3.15 UART Registers. BASE = 0x1F00.0900

1. The Divisor Latch Registers are accessible through RXTX and INTEN registers when bit 7 (Divisor Latch Access Bit) of the Line Control Register is set.

3.8 General Purpose I/O

The Malta Board has eight GP inputs and eight GP outputs connected to the Core Board. For usage details, refer to the documentation on the specific Core Board.

Name:	GPOUT
Address:	0x1F00.0A00
Access:	R/W
Reset Value:	n/a

Table 3.16 GPOUT Register

Bits	Field Name	Function	Initial Value
31:8	Reserved	Reserved	n/a
7:0	OUTVAL	Writing to this address sets the 8 GP output pins. Reading gives the actual setting of the GP out- put pins. Functionality is Core Board dependent.	0x00

Name:	GPINP
Address:	0x1F00.0A08
Access:	RO
Reset Value:	n/a

Table 3.17 GPINP Register

Bits	Field Name	Function	Initial Value
31:8	Reserved	Reserved	0
7:0	INPVAL	Reading gives the actual state of the GP input pins. Functionality is Core Board dependent.	n/a

3.9 I²C

 I^2C bus access registers. As both lines have an open-drain output, no conflicts can occur during direction shift on the bi-directional lines.

There are three registers for I^2C control:

- I2CINP: Reads input values.
- I2COE: Controls output enables
- I2COUT: Controls output values.

and one register for selecting I^2C controller:

• I2CSEL: Selects between the FPGA I²C controller and the South bridge I²C controller (the two I²C controllers cannot co-exist).

Name:	I2CINP
Address:	0x1F00.0B00
Access:	RO
Reset Value:	n/a

Table 3.18 I2CINP Register

Bits	Field Name	Function	Initial Value
31:2	Reserved	Reserved	n/a
1	I2CSCL	Reading gives the actual value of the I ² C SCL pin.	1
0	I2CSDA	Reading gives the actual value of the I ² C SDA pin.	1

Name:	I2COE
Address:	0x1F00.0B08
Access:	R/W
Reset Value:	n/a

Table 3.19 I2COE Register

Bits	Field Name	Function	Initial Value
31:2	Reserved	Reserved	n/a
1	I2CSCL	"1" means that the I2CSCL bit of the I2COUT register will be driven to the I ² C SCL pin. "0" means that the I ² C SCL pin is tri-stated.	0
0	I2CSDA	"1" means that the I2CSDA bit of the I2COUT register will be driven to the I ² C SDA pin. "0" means that the I ² C SDA pin is tri-stated.	0

Name:	I2COUT
Address:	0x1F00.0B10
Access:	R/W
Reset Value:	n/a

Table 3.20 I2COUT Register

Bits	Field Name	Function	Initial Value
31:2	Reserved	Reserved	n/a

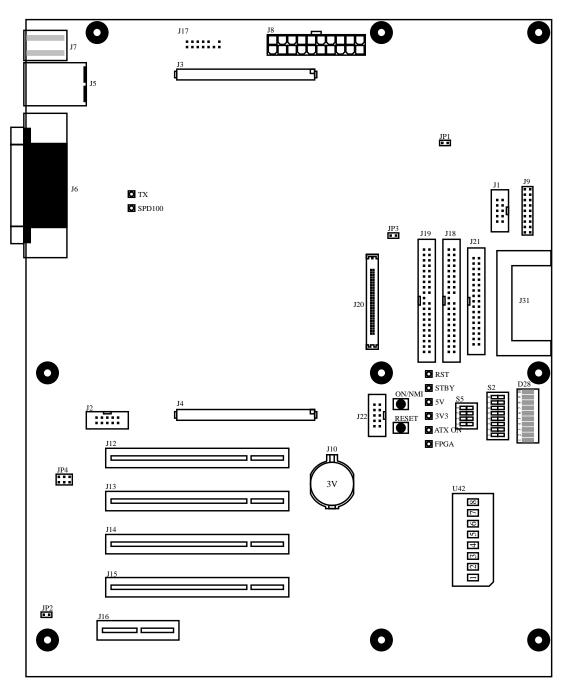
Table 3.20 I2COUT Register

Bits	Field Name	Function	Initial Value
1	I2CSCL	The value of this bit will be driven to the I ² C SCL pin when the I2CSCL bit of the I2COE register is "1".	1
0	I2CSDA	The value of this bit will be driven to the I^2C SDA pin when the I2CSDA bit of the I2COE register is "1".	1

Name:	I2CSEL
Address:	0x1F00.0B18
Access:	R/W
Reset Value:	0x01

Table 3.21 I2CSEL Register

Bits	Field Name	Function	Initial Value
31:1	Reserved	Reserved	n/a
0	I2CFPGA	 "1" means that the I²C controller in the FPGA is enabled and the I²C controller in the South Bridge is disconnected from the I²C bus. "0" means that the I²C controller in the FPGA is disabled and the I²C controller in the South Bridge is connected to the I²C bus. 	1


Memory Map

Chapter 4

Board Layout

The basic layout of the Malta Board is shown in Figure 4.1.

Figure 4.1 Malta Board Layout

The board has an ATX (305 mm x 244mm) form factor and is in accordance with the ATX specification [12] with regards to board size, mounting hole placement, connector placement, and height constraints.

The connector layout on the rear panel (namely, the shield design as described in Design Guide for Intel ATX Motherboard I/O Implementations Version 1.1 [13] is a subset of Intel Core design #1. This enables the Malta Board to be installed in an ordinary ATX chassis. Figure 4.2 shows the rear panel connector layout.

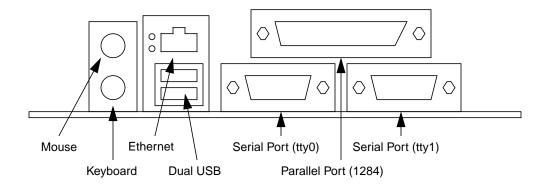


Figure 4.2 Rear Panel Connector Layout

4.1 Connectors & Jumpers

All jumpers are standard 0.1" pitch. A dot by a pin indicates pin 1. On all jumpers, pins are numbered crosswise, that is, the end pins are 1 & 2 (this is not always the case on other connectors).

Ref	Туре	Description	
J1	10 pin 0.1" header	Download connector for CBUS FPGA EEPROM.	
J2	10 pin 0.1" header	Download connector for Arbiter EPLD.	
J3	200way header	Connects the Core Board. Carries amongst other things the CBUS.	
J4	200way header	Connects the Core Board. Carries amongst other things the primary PCI bus.	
J5	RJ45	Ethernet.	
	Dual USB A	Two USB host ports.	
J6	25 pin DSUB	IEEE1284 / Flash programming port. This can either be used as a par- allel port for communications, and is also used to program Flash devices during production.	
	Dual 9 pin DSUB	tty0 (left) and tty1 (right).	
J7	Dual 6 pin miniDIN	Connection to a PC keyboard (lower) and mouse (upper).	
J8	ATX PSU	This connects the power.	

Table 4.1 Interface Connectors

Ref	Туре	Description
J9	18 pin 0.1" header	Front Panel connector. Power LED, HD LED, Power Switch, Reset Switch. Pin 14 is removed from the connector.
J10	Battery Connector	CR2032 Battery Connector used by the RTC (South Bridge).
J12-15	PCI slot	Allows insertion of probe board, or PCI board with additional func- tionality.
J16	AMR slot	Allows insertion of audio modem riser (AMR) board.
J17	14 pin 0.1" header	EJTAG connector. As per EJTAG specification, see Ref [4]. Pin 12 is removed from the connector.
J18	40 pin 0.1" header	Primary IDE interface. Pin 20 is removed from the connector.
J19	40 pin 0.1" header	Secondary IDE interface. Pin 20 is removed from the connector.
J20	Compact Flash con- nector	Compact Flash interface at Secondary IDE interface. Type I or II module.
J21	34 pin 0.1" header	Floppy Disk interface. Connects to FD via IDC ribbon cable (7 wires twisted, PC-style). Drive A support only.
J22	10 pin 0.1" header	tty2 (CBUS UART).
J23	AMP 38 pin Mictor	HP Logic Analyzer connector (CBUS data).
J24	AMP 38 pin Mictor	HP Logic Analyzer connector (CBUS control + address).
J25	AMP 38 pin Mictor	HP Logic Analyzer connector (CBUS FPGA).
J26	AMP 38 pin Mictor	HP Logic Analyzer connector (Reset + Interrupts).
J27	AMP 38 pin Mictor	HP Logic Analyzer connector (JTAG + PCI Arbiter).
J30	3 pin 0.1" header	Power LED connector
J31	Compact Flash con- nector	Compact Flash interface at Secondary IDE interface. Type I or II module. Alternative fit for J20

Table 4.1 Interface Connectors (Continued)

Table 4.2 Jumpers

Ref	Silkscreen	Pins	Options	Default	Description	
JP1	MFWR	2	fit-notfit	notfit	When fitted	Enables writing to the Monitor Flash lock bits from software. It also allows writing to the Monitor Flash itself, regardless of the state of the Lock bits.
					When not fitted	Disables writing to the Monitor Flash lock bits from software.

Ref	Silkscreen	Pins	Options	Default		Desci	ription	
JP2	EEWR	2	fit - notfit	notfit	When fitted	(U14).	ng to the I ² C I nis - it is reserv	EEPROM /ed for produc-
					When not fitted	Disables writ (U14).	ing to the I ² C	EEPROM
JP3	CF MASTER	2	fit - notfit	notfit	When fitted		t Flash module the secondary	
					When not fitted		t Flash module econdary IDE	
JP4	PCI CLK	6	10 - 37.5	33.33 ⁽²⁾	Sets PCI cloc "X" = fitted.	PCI clock- frequency between 10MHz - 37.5MHz. = fitted.		z - 37.5MHz.
					MHz/Pins	1-2	3-4	5-6
					10 ⁽¹⁾	X	X	X
					12.5 ⁽¹⁾			X
					16.67 ⁽¹⁾	X		X
					20 ⁽¹⁾	X		
					25 ⁽¹⁾		Х	
					30 ⁽¹⁾	X	Х	
					33.33			
					37.5		Х	X

Table 4.2 Jumpers (Continued)

Note 1: Only 10BASE-T is supported (100BASE-TX is not supported).

Note 2: Some Core Boards cannot run with a PCI clock frequency of 33.33 MHz. See the respective Core Board User's Manuals for maximum clock frequency.

4.2 Switches

Malta's switches are described in Table 4.3. For those switches that are software-readable, a switch in position "ON" or "CLOSED" (not in the "OPEN" position) will give a "1" in the appropriate register.

Table 4.3	Switches
-----------	----------

Ref	Туре	Default	Description
S 2	8-way DIP	All OFF	This switch provides a value which can be read from the SWITCH register.

Ref	Туре		Default	Description
S 3	Push- button		n/a	Reset button.
S4	Push- button		n/a	NMI/Power ON button. This button will bring the ATX power supply out of stand-by. It also generates an NMI to the CPU, for example, to shut down the PSU again. This button causes a hardware shutdown if pressed for more than four seconds at a PCI clock at 33MHz. For PCI clocks below 33.33 MHz, the button has to be pressed for a longer period of time (up to 12 seconds).
S 5	4-way DIP	S5-1	OFF	When ON, enables Flash programming via 1284 parallel port. This swithch enables writing to the Monitor Flash lock bits. It overrides Jumper JP1.
		S5-2	OFF	When ON, set operation mode to big endian. If the endianess is changed, Malta must be reset again in order for the new endian mode to take effect. If the board is not reset unpredictable operation can occur.
		S5-3	OFF	No default function. Can be read from the STATUS register.
		S5-4	OFF	When ON at power-on or at reset, sets YAMON in factory default mode eg. communication on tty0 port is forced to 38.4 kbaud, 8 bits/char, RTS/CTS hardware handshaking and no parity.

Table 4.3 Switches (Continued)

DIP switches S2, S5-2, S5-3, and S5-4 are readable by software.

For the DIP switches S2 & S5, a switch referred to as "1" is marked by a dot or by a "0" in the silkscreen, or the switch is marked by a "1".

4.3 Displays / LEDs

The Malta Board has two displays and various individual status LEDs., described in Table 4.4. See also Section 3.5, "Displays".

Ref	Silkscreen	Туре	Description
D28	n/a	8-way bar	Controlled by software.
U42	n/a	8 char ASCII display	Used by YAMON to display status. Can be used for any user purpose.
D7	ATX ON	Green SMD	Indicates that power is applied to the ATX power-supply. Also lit when board is in stand-by mode.
D2	STBY	Green SMD	Indicates that power is applied to 3V3STBY (+/-5%) and 5VSTBY (+/-5%). Not led when board is in stand-by mode.
D6	5V	Green SMD	Indicates that power is applied to 5V (+/-5%).
D4	3.3V	Green SMD	Indicates that power is applied to 3.3V (+/-5%).

Ref	Silkscreen	Туре	Description
D5	FPGA	Green SMD	Indicates that CBUS FPGA programming completed OK.
D9	RST	Red SMD	Indicates that RSTN is active.
D1	TX	Yellow SMD	Ethernet LED3: Blinks on TX Ethernet packets (Program- mable).
D3	SPD100	Green SMD	Ethernet LED2: ndicates that 100 Mbit speed is selected (Programmable).

Table 4.4 LEDs (Continued)

The two LEDs, described in Table 4.5, are built-in to the RJ45 connector J5 and display status.

Table 4.5 Ethernet Connector LED Functionality

LED	Function
Green	Ethernet LED0: Link up (Programmable)
Yellow	Ethernet LED1: Activity (Programmable)

All four ethernet LEDs are programmed/controlled by the ethernet controller. LED0-LED3 are linked to the four LEDs.

Chapter 5

Hardware Description

This chapter describes the Malta Board's hardware components. For more detailed information on these components, refer to the Malta Schematics [16].

5.1 PCI Bus

The PCI bus is implemented as a 5V, 32-bit and 33 MHz PCI standard version 2.2 compliant bus [1] that connects the main components on the Malta Board.

The devices on the PCI bus are:

- Core Board connector for connection to the system controller on the Core Board
- Intel PIIX4E South Bridge, 82371E (U9)
- AMD Ethernet controller, Am79C973 (U41)
- Crystal Audio controller, CS4281 (U23)
- Four 5V, 32-bit PCI connectors (J12-J15) that can be used for debug and trace and/or for installation of PCI boards

For configuration purposes, the IDSEL and INT# signals to the PCI devices are connected as shown in Table 5.1.

	IDSEL PCI	PCI Interrupts Mapping			
Device	Address	PCI_INTAN	PCI_INTBN	PCI_INTCN	PCI_INTDN
South Bridge	PCI_ADP20				USB_IRQ#
Ethernet controller	PCI_ADP21		ETHER_IRQ#		
Audio controller	PCI_ADP22			AUDIO_IRQ#	
Core Card	PCI_ADP27				
PCI Connector 1	PCI_ADP28	INTA#	INTB#	INTC#	INTD#
PCI Connector 2	PCI_ADP29	INTD#	INTA#	INTB#	INTC#
PCI Connector 3	PCI_ADP30	INTC#	INTD#	INTA#	INTB#
PCI Connector 4	PCI_ADP31	INTB#	INTC#	INTD#	INTA#

Table 5.1 IDSEL and INT# for PCI Devices

5.1.1 PCI Arbiter

The PCI arbiter controls the request and grant scheduling to the eight PCI components and is implemented in an Altera MAX3064 EPLD.

The PCI arbiter implements a round-robin scheme, where each of the eight components have equal priority.

Figure 5.1 shows the signals used during PCI arbitration.

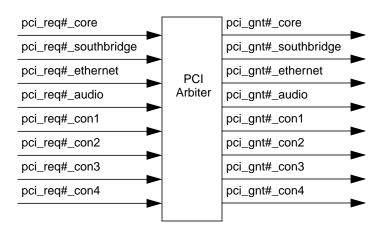


Figure 5.1 PCI Arbiter Connections

5.2 I²C Bus

The Malta Board has two I²C controllers:

- a simple one in the FPGA, used for accessing SDRAM information for debug purposes and similar operations when the PCI bus is unconfigured
- a more advanced controller in the South Bridge used for normal operation

The active I²C controller is set in the I2CSEL register in FPGA.

5.3 Power

The board operates with 3.3V and 5V, supplied from a standard PC ATX power supply connected to J8. This should be able to supply enough current for the board and all conceivable Core Board options. The 12V and -12V is only connected to the Core Board (only 12V) and the AMR and PCI connectors. See [11] for details of a suitable supply.

Power On/Off is controlled by the South Bridge and its function is similar to a PC.

The board also supports Power Management Events, for eample, Wake On LAN events, used for powering up in stand-by mode.

5.4 Reset

A push-button switch (S3) is provided to reset the board. Alternative sources of reset are:

- the CBUS FPGA, when a "magic" value is written to the SOFTRES register
- the EJTAG probe system reset signal (EJRSTN)
- an incoming break on the tty0 port (J6). This break may be disabled by software.

All resets are the same - there is no difference between a "warm" and a "cold" reset. All hardware, including hardware driven by stand-by voltages, are reset at reset.

5.5 Clocks

The PCI clock normally runs at 33 MHz, generated from a 14.31818 MHz crystal using a clock synthesizer/driver (U13). The PCI clock can be configured via JP4 (see Table 4.1).

This will not affect the clock frequency of a CPU mounted on its Core Board; the Core Board generates its own clock.

The Malta Board contains the following clocks:

- RTC (32.768 KHz)
- CBUS UART (tty2) (3.6864 MHz)
- ISA Environment (14.31818 MHz)
- Ethernet (25 MHz)
- PCI clock (33 MHz configurable to 10, 12.5, 16.67, 20, 25, 30, 33.33 and 37.5 MHz)
- CBUS FPGA (40 MHz)
- USB (48 MHz)

5.6 Interrupt Controller

The interrupt controller is located in the South Bridge device. An NMI interrupt controller (for South bridge NMI and ON/NMI button) is located in the FPGA (see Section 3.2, "NMI Interrupts").

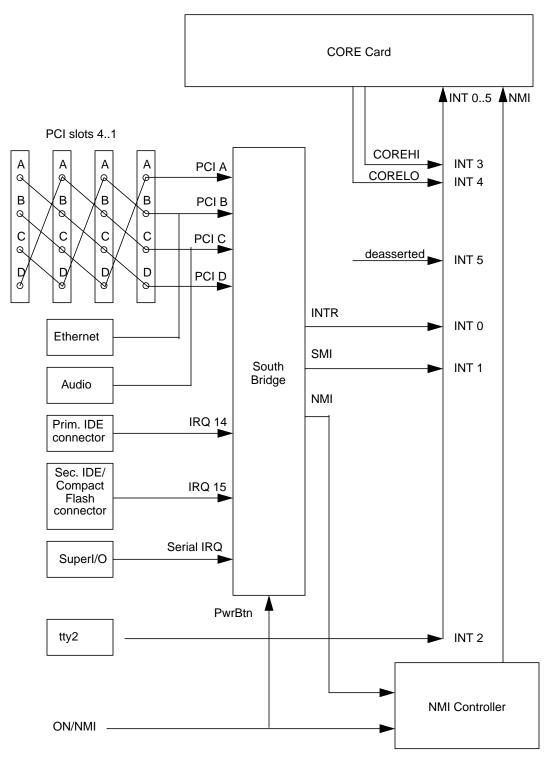
Interrupts routed to the South Bridge are triggered by the following devices:

- South Bridge internal devices (timer, real time clock, USB)
- Super I/O devices (keyboard, 2 UARTs, floppy disk, parallel port, mouse)
- Ethernet controller
- Audio controller

- Primary and Secondary IDE devices
- PCI slots 1..4
- SERR (PCI bus) and IOCHK (ISA bus) signals may trigger the South Bridge NMI interrupt
- Various power management related events in the South Bridge may trigger the South Bridge SMI interrupt
- I²C bus controller in the South Bridge may trigger either the South bridge SMI or IRQ9 interrupt

Interrupts routed directly to the Core Card are triggered by the following devices :

- Core card (COREHI, CORELO signals)
- Discrete 16550 UART device (CBUS UART (tty2))


Figure 5.2 shows the interrupt wiring. The figure does not include the connections of SERR from the PCI slots and the Core Card to the South Bridge.

IRQ 0..15 from devices located in the Super I/O device are routed to the South Bridge using a serial connection.

PCI A..D interrupts including the South Bridge USB controller (using PCI D) are mapped on IRQ 0..15, which are further multiplexed to South Bridge INTR.

Based on the interrupt sources, the South Bridge generates 3 interrupts : INTR, SMI, and NMI.

Most sources of interrupt are handled in an interrupt controller located in the South Bridge. A few are handled in the CBUS FPGA (COREHI, CORELO and CBUS UART (tty2) interrupt), this means that CPU and CBUS interrupt sources can be handled before the PCI bus has been configured. Please use the macros in the header file to access all registers and fields of the interrupt controller, as described in [3].

IRQ 0..15 are prioritized in the sequence : 0, 1, 8..15, 3..7. IRQ 2 is reserved for cascading the two 82C59 devices that together constitute the South Bridge Interrupt Controller.

The mapping of IRQ 0..15, as used by YAMON, is shown in Table 5.2.

IRQ #	Source(s)	Device(s)
0	Timer	South Bridge
1	Keyboard	SuperI/O
2		Reserved by South Bridge (for cascading)
3	UART (tty1)	SuperI/O
4	UART (tty0)	SuperI/O
5		Not used
6	Floppy Disk	SuperI/O
7	Parallel port (1284)	SuperI/O
8	Real Time Clock	South Bridge
9	I ² C bus	South Bridge
10	PCI A, PCI B (including Ethernet)	PCI slot 14, Ethernet
11	PCI C (including audio), PCI D (including USB)	PCI slot 14, Audio, USB (South Bridge)
12	Mouse	SuperI/O
13		Reserved by South Bridge
14	Primary IDE	Primary IDE slot
15	Secondary IDE	Secondary IDE slot/Compact flash connector

Table 5.2 IRQ 0..15 Mapping

The mapping of CPU INT0..5 and CPU NMI is shown in Table 5.3.

Table 5.3 CPU INT0..5 and CPU NMI Mapping

CPU INT/NMI	Source(s)	Device(s)	
NMI	South Bridge NMI or NMI button	South Bridge or On/NMI Buttom	
0	South Bridge INTR	South Bridge	
1	South Bridge SMI	South Bridge	
2	CBUS UART (tty2)	Discrete 16550	
3	COREHI	Core Card	
4	CORELO	Core Card	
5	Not used, driven inactive	Typically used for CPU internal timer interrupt	

5.7 Serial Ports

There are 2 serial ports (tty0 and tty1) on Malta which are available on the rear edge via standard, male DB9 connectors (J6). These ports are provided by the Super I/O. A third serial port (tty2) is available via a 10-pin header (J22). This port is provided by the discrete 16550. The pinout of these connectors is shown below:

Each port is electrically identical, with the pinout shown in the table below allowing full hardware handshaking.

PIN NO (DB9)	PIN NO (10-pin)	Name	Direction
1	1	CD	Input
2	3	RXD	Input
3	5	TXD	Output
4	7	DTR	Output
5	9	GND	
6	2	DSR	Input
7	4	RTS	Output
8	6	CTS	Input
9	8	RI	Input
	10	No Connect	

Table 5.4 Serial Port Pinouts

The following 5-wire symmetric wired cable must be used to guarantee correct operation of the hardware flow control, which is used by YAMON. Pin connections between the two, 9-pole male connectors (for a standard PC serial port):

- 2 to 3 (RXD to TXD)
- 3 to 2 (TXD to RXD)
- 5 to 5 (GND to GND)
- 7 to 8 (RTS to CTS)
- 8 to 7 (CTS to RTS)

5.7.1 File Download

The recommended data terminal program for PCs running Windows OS is Procomm Plus32 from DATASTORM TECHNOLOGIES. Here is the setup sequence for simple Motorola S-record file downloads:

Communication settings in the menu area:

• Options->SystemOptions->ModemConnection->System

Now select the 'com' port and click on the 'Modem/ConnectionProperties' to set the 'baudrate'(=38400), 'parity'(=none), data bits(=8), stop bits(=1) and important select 'use hardware flow control'.

Download protocol setting in the menu area:

• Options->SystemOptions->ModemConnection->Data

Now set 'current transfer protocol' to 'ASCII', set all delays to '0' and set the CR/LF options to 'don't translate CR/LF'. The file to be downloaded (to Malta) is selected via the path:

• Data->SendFile

5.7.2 Serial Port Reset

The tty0 port (J6) can be used to reset the Malta Board. By default, a "Break" condition on the tty0 port for more than 10 ms will reset the board, exactly as if the reset button had been pressed. This functionality can be disabled, or the time can be changed to a different value by programming the BRKRES register in the CBUS FPGA (see Section 3.6, "Reset Control").

5.8 Ethernet

The Ethernet controller (U41 [8]) supports both 10base-T and 100base-TX standard on a twisted pair connection via the rear panel connector J5. The device has an integrated PHY section and is capable of auto-negotiating the line speed/duplex with the far end. Its MAC address is stored in the locally-connected EEPROM (U39) and must not be altered.

Note: Only 10BASE-T is supported (100BASE-TX is not) for PCI clocking frequencies below 33.33 MHz (see Table 4.1).

See Section 4.3, "Displays / LEDs" for a description of the Ethernet LEDs, which are built into the RJ45 connector and the on-board LEDs.

The ethernet controller supports Wake On LAN for remote wake-up. For additional information, see [8].

5.9 USB

Two host USB ports are available on a double connector (J5) on the rear edge of the board. These are controlled through the South Bridge[6].

5.10 Keyboard / Mouse / IEEE1284 Parallel Port / Floppy Disk

These functions are provided by the Super I/O chip (U11)[9]. The PC keyboard and mouse are on a double mini-DIN connector (J7), and the parallel (1284) port is on a 25-pin DSUB connector (J6), both on the rear board edge. The floppy disk connector is header J21.

The parallel port also allows the user to reprogram the Flash memory, which is usually only done for production or software upgrades. See Section 5.13, "Flash Memory".

The Super I/O supports one floppy disk, connected via a 34 wires ribbon cable (7 wires twisted, PC-style).

5.11 Real Time Clock (RTC)

The South Bridge (U9) contains the Real Time Clock for the board [6]. The clock has an external battery backup (CR2032 coin cell) (J10), which has an expected life time of 5-10 years.

5.12 IDE/CompactFlash (True IDE Mode)

The South Bridge (U9) provides both primary and secondary IDE busses [6]. The primary bus is brought out on connector J18, and may have both master and slave devices attached. The secondary bus connects both to the Compact Flash connector J20 (Type I or II connector) and to the secondary IDE connector J19. Jumper JP3 selects whether the Compact Flash module behaves as (if fitted) a master or (if not fitted) as a slave device. If a Compact Flash module is used, any device plugged into the secondary IDE connector must have the opposite setting.

For additional information about Compact Flash modules, see [15].

5.13 Flash Memory

Malta is fitted with 4 Mbytes of Flash memory (refered to as Monitor Flash), which is used to boot the system. See Chapter 3, "Memory Map" on page 13 for details of the Malta memory map.

The Monitor Flash can be programmed via a download cable, as described in Chapter 6, "1284 Flash Download Format" on page 45.

The Monitor Flash can also be reprogrammed by software. There is one protection mechanism:

• Jumper JP1 (See Section 4.1, "Connectors & Jumpers") must be installed for any writing to the Monitor Flash Lock Bits from software.

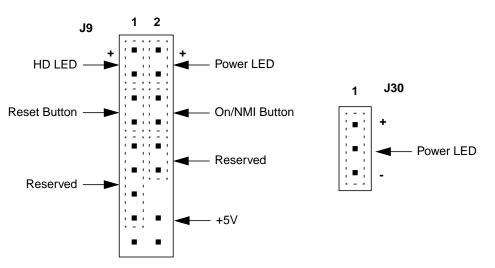
Note that while the Monitor Flash is being reprogrammed by software, the code that performs the reprogramming will have to be copied into RAM and executed there, because the Flash is inaccessible during this process.

All the Flash fitted are Intel 16 Mbit FlashFile devices. See Intel's web site for the documentation, or see YAMON documentation [3] for an easy-to-use software interface.

From a hardware viewpoint, the Flash appears as a 32-bit wide block, with no individual write control capability to allow writing to just one, 16-bit halfword. However, this function can be achieved by software by running a Read-Modify-Write cycle.

5.14 EEPROM

The I^2C -connected EEPROM (U14) contains, on manufacture, the board serial number. The remaining locations in the EEPROM are not available for application use.


A second EEPROM (U39) is directly connected to the Ethernet controller and is used to store the board's MAC address.

5.15 AMR (Audio Modem Riser)

Connector J16 is an AMR connector [14] that allows an audio/modem interface card to be plugged into the motherboard. This is controlled via U23, a PCI Audio controller [7]. The AMR connector is a dual AC'97 audio codec interface.

5.16 Front Panel Connector

The Front Panel connector (J9), shown in Figure 5.3, contains all signals to/from the front panel of a normal PC-chassis. An additional connector (J30) is available for a three-pin Power LED connector.

Figure 5.3 Front Panel Connector

5.17 Debug Access

5.17.1 Software Debug

The EJTAG connector (J17) allows connection of a suitable EJTAG debugger probe directly to the CPU. This allows access to the internal hardware debug functionality of the CPU core. See [4] for details.

5.17.2 Hardware Debug

You have access to most, if not all, interesting signals on the Malta Board via testpoints (Table 5.5) and HP Logic Analyser high-density connectors (Table 5.6). Refer to the tables below and the schematics for details of these.

Ref	Silkscreen	Color	Function
TP1	D3V3SB	Red	Digital 3.3V Stand-by
TP2	D5VSB	Red	Digital 5V Stand-by rail
TP3	D3V3	Red	Digital 3.3V rail

Table 5.5 Testpoints

Ref	Silkscreen	Color	Function
TP4	D5V	Red	Digital 5V rail
TP5	D12V	Red	Digital 12V rail
TP6	D12VN	Red	Digital -12V rail
TP7-12	GND	Black	Ground

Table 5.5 Testpoints (Continued)

Table 5.6 Logic Analyser Connectors

Ref	Function	Bits	Signals	Description
J23 CBUS DATA		Clock	CLK_40MHZ	40 MHz
Even	Even		CBUS_D[31:16]	CBUS data
J23	CBUS DATA	Clock	PCI_CLK	33.33 MHz (default)
Odd		15:0	CBUS_D[15:0]	CBUS data
J24	CBUS	Clock	CLK_1KHZ	1 KHz
Even		15:13	FPGA_RSTN, RSTN, BIGEND	CBUS FPGA signals
		12:10	CBUS_WRN, CBUS_RDN, CBUS_CSN	CBUS control
		9:0	CBUS_A[25:16]	CBUS address
J24		Clock	CLK_32KHZ	32 KHz
Odd		15:2	CA[15:2]	CBUS address
		1:0	GND	Used as CA[1:0]
J25	CBUS FPGA	Clock	CLK_40MHZ	40 MHz
Even		15:12	FRSTN, PAR_ENAB, FPGA_RSTN, MFSTS	
		11:4	UCSN, REVCSN, CGPIOCSN, CGPIOWR, MFCSN, ASWCSN, ADCSN, ABRLEDCS	Chip selects
		3:0	Not used	
J25	IIC + ASCII	Clock	PCI_CLK	33.33 MHz (default)
Odd	Display	15:14	IIC_SCL, IIC_SDA	IIC signals
		13	Not Used	
		12:8	ADA[4:0]	ASCII display address
		7:0	ADD[7:0]	ASCII display data

Ref	Function	Bits	Signals	Description
J26 Even	RESET	Clock	CLK_1KHZ	1 KHz
		15	CLK_32KHZ	32 KHz
		14:13	DVSB_OK, SB_RSTN	Stand-by Reset control
		12:5	FRSTN, EJRSTN, ATX_OK, CBUS_FPGA_OK, D5V_OK, D3V3_OK, POWER_OK, CORE_OK	Reset control
		4:2	FPGA_RSTN, RSTN, RST	RESET outputs
		1	PAR_ENAB	Parallel download
		0	CPRESN	Core card present
J26	CBUS FPGA	Clock	PCI_CLK	33.33 MHz (default)
Udd	Odd		CPU_INTN5, CPU_INTN4, CPU_INTN3, CPU_INTN2, CPU_INTN1, CPU_INTN0, CPU_NMIN, SOUTHBRIDGE_INT, SOUTHBRIDGE_NMI, SOUTHBRIDGE_SMIN, UINT, CINTHIN, CINTLON	Interrupts
		2:1	Not used	
		0	ISA_SERIRQ	Super I/O Interrupts
J27	JTAG + PCI	Clock	CLK_40MHZ	40 MHz
Even	Even	15:10	EJTRSTN, EJTDO, EJTDI, EJTMS, EJTCK, EJDINT	JTAG signals
		9:6	PCI_INTAN, PCI_INTBN, PCI_INTCN, PCI_INTDN	PCI Interrupts
		5:0	PCI_FRAMEN, PCI_IRDYN, PCI_TRDY, PCI_DEVSELN, PCI_STOPN, PCI_LOCKN	PCI signals

Table 5.6 Logic Analyser Connectors (Continued)

Ref	Function	Bits	Signals	Description
J27 Odd	ARBITER	Clock	PCI_CLK	33.33 MHz (default)
Ouu		15:8	PCI_REQN_CORE, PCI_REQN_SOUTHBRIDGE, PCI_REQN_ETHERNET, PCI_REQN_AUDIO, PCI_REQN_CON1, PCI_REQN_CON2, PCI_REQN_CON3, PCI_REQN_CON4	Requests
		7:0	PCI_GNTN_CORE, PCI_GNTN_SOUTHBRIDGE, PCI_GNTN_ETHERNET, PCI_GNTN_AUDIO, PCI_GNTN_CON1, PCI_GNTN_CON2, PCI_GNTN_CON3, PCI_GNTN_CON4	Grants

Table 5.6	Logic Analyser Connector	s (Continued)

Hardware Description

1284 Flash Download Format

The Malta Board's Flash memory can be programmed and reprogrammed using a download cable that connects directly to a PC parallel port. The CBUS FPGA can read data from this port and execute the appropriate erase/write cycles in the Flash. The PC must be configured so that its printer port is set to "Generic - text only", to avoid unpredictable escape sequences being sent. The file format is a sequence of ASCII encoded hex bytes as described below.

How to download:

- Connect the parallel cable between the PCs parallel port, and J6 on the Malta.
- Switch S5-1 on the Malta to ON or CLOSED.
- Switch both PC and Malta ON.
- Run the download script to dump the file to the parallel port on the PC or workstation.
- Switch S5-1 to OFF, and reset Malta.
- Disconnect the parallel cable.

According to the memory map in Chapter 3, "Memory Map" on page 13, the Monitor Flash is programmed on base address 0x1E00.0000 or 0x1FC0.0000. If any address outside the Flash is addressed the attempt will be ignored.

Note: When programming the address 1FC0.0010 it is the Monitor Flash that is being programmed, but when reading the address it is overridden and does NOT decode to an address in Flash, but rather to register address REVISION. The only way to read the programmed value back is to read the "non-boot" Monitor Flash address, ie. address 0x1E00.0010. See Chapter 3, "Memory Map" on page 13.

The Malta Board's Flash devices are organised in sectors of 64 Kbyte. "Erase" and "Set Lock Bit" commands operate on exactly one sector, this being the sector currently addressed. After the last block of 16 words in a sector are written into flash, the address counter has advanced to the next sector. This implies that a Set Address (@) to the sector has to be executed before a Set Lock Bit command (!S) can be issued.

The file to be loaded into the Flash via the 1284 port has the following format:

Type:	ASCII hex (both lower- and uppercase letters are accepted).
White space:	Any characters below or equal to 20h are ignored (character 20h (space) is allowed in the Print command. After the character 1Bh (start of a printer initialisation command) it ignores any character until next Reset Command.
Word width:	32 bits (data has to be in blocks of 16 words and has to be placed on 16 word boundaries).

The download codes, shown in Table 6.1, are used to control code download and Flash memory handling:

Code	Meaning
@	Sets current writing/erasing address (in physical memory map format)
!R	Reset download system
!E	Erase the current Flash sector (64 KB)
!C	Clear all Flash lock-bits
!S	Set current Flash sector lock-bit
#	Comment (rest of line)
>	Print command (shows next 8 characters in ASCII display, the com- mand needs exactly 8 non-white space characters). Any character except for "!" and "#" may be printed - use of these in the print com- mand is reserved.
data	data has to be in blocks of 16 words, without interruption of any Com- ments (#) and Print Commands (>)

Table 6.1 Download Codes

Example of code download format:

```
#Example
!R
@1E000000
!E
12345678 23456789 3456789A 456789AB
56789ABC 6789ABCD 789ABCDE 89ABCDEF
9ABCDEF0 ABCDEF01 BCDEF012 CDEF0123
DEF01234 EF012345 F0123456 01234567
# always 16 words in a block
```

After a Reset it will start at 1E00.0000 (the base of Monitor Flash), erase the base sector, and then write the 16 words into offset 0.

If an error occurs during Flash download, an error message appears on the ASCII displays. The meaning of the error messages is shown in Table 6.2.

Message	Meaning		
Ill cmd	Illegal command received, for example, "R" is received (not !R)		
Ill !cmd	Illegal "!" command received, for example, "!A" is received		
Ill hex	Illegal hex received (in data or addr), for example, "ABCDEFGH" both "G" and "H" is illegal characters		
Hex exp	Hex expected (always data blocks of 16 words), for example, a comment (#) is received in the middle of a block of 16 words		
Era susp	Block erase suspended		

Table 6.2 Flash Download Error Messages

Message	Meaning		
Err era	Error in block erasure or clear lock-bits		
Err prog	Error in programming or set block lock-bits		
Low volt	Low programming voltage detected		
Lock det	Master lock-bit, Block lock-bit or RP# lock detected		

Table 6.2 Flash Download Error Messages (Continued)

1284 Flash Download Format

Chapter 7

Core Card Design

This chapter describes the external specification with which all Core cards must comply.

7.1 Required Interfaces

This section describes the interfaces that must be present on the Core card.

7.1.1 Power

Power supplies at 3.3V, 5V and 12V, positioned such that if a Core card is placed on the motherboard 180 degrees incorrectly, all rails are shorted out by a number of pins. This should place the PSU in shutdown mode.

It is not guaranteed that the 5V rail will be present before the 3.3V rail.

7.1.2 PCI Bus

The interface to the core card includes a PCI bus. All core cards shall be 5V tolerant on inputs but drive 3.3V on all outputs on the PCI bus.

7.1.3 Clock

The PCI bus clock is driven to the Core card from the motherboard. The Core card shall be able to run with this clock at any frequency from 0-33MHz.

7.1.4 Revision Number

The Core card drives a processor-readable revision number, via pins CREV[7:0], down to the motherboard where the CPU will be able to read them via the CBUS.

This revision number could for example be set via 8 fit/not-fit resistors.

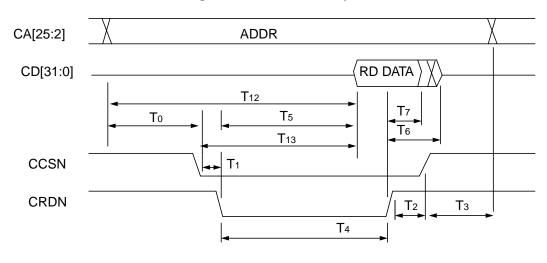
7.1.5 I²C bus

An I²C bus is present on the interface. This will typically be used for interrogating SDRAM DIMMs. See User Manual for the address map.

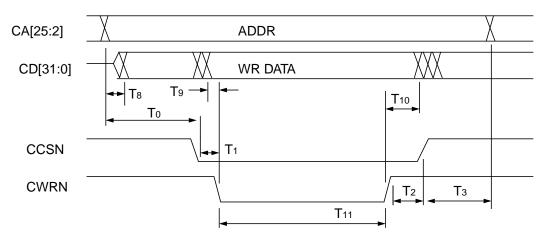
7.1.6 Interrupts

Six interrupt signals to the MIPS CPU on the Core card are present, as is a single NMI interrupt signal, triggered by a front-panel push button. Core cards must route all of these interrupts to the CPU—if the CPU chip has fewer external interrupt pins, they should be ORed together.

7.1.7 Endian


The endian control signal, BIGEND, is driven by the motherboard according to setting of S5-2.

7.1.8 CBUS


The CBUS is designed to interface to simple devices on the motherboard which must be accessed by the CPU before the PCI is up and running, or to devices with a low latency (for example, the interrupt controller and Flash memory). CBUS signals are described in Table 7.2.

All core cards decode CPU addresses from 0x1C00.0000 to 0x1FFF.FFFF. These addresses are translated to addresses 0x0000.0000 to 0x03FF.FFFF on the CBUS.

All CBUS signals must use 3.3 volt signalling levels. Read and write cycles are schown in Figure 7.1 and Figure 7.2. AC timing parameters are shown in Table 7.1.

Figure 7.1 CBUS Read Cycle

Figure 7.2 CBUS Write Cycle

Table 7.1	CBUS AC	Timing	Parameters
-----------	---------	--------	------------

Ref	Description	Tmin(ns)	Tmax(ns)
T0	Address valid to CCSN active	5	-
T1	CCSN valid to strobe (CRWN or CRDN) valid	10	-
T2	strobe (CRWN or CRDN) inactive to CCSN inactive	10	-
Т3	Address hold from CCSN inactive	20	-
T4	CRDN width	120	-
T5	CRDN active to read data valid	-	120
T6	CRDN inactive to data bus tristated	-	20
T7	Read data hold time after CRDN inactive	0	-
Т8	Address valid to data bus driven	0	-
Т9	Write data setup to CRWN active	0	-
T10	Write data hold time after CWRN inactive	10	-
T11	CWRN pulse width	75	-
T12	Address valid to read data valid	-	150
T13	CCSN active to read data valid	-	150

7.1.9 EJTAG

The EJTAG signals from the "basic" EJTAG connector are taken to the interface from the front panel connector.

7.1.10 Misc.

Various debug, reserved, and presence-detect functions, as described in the following subsections.

7.2 Signals

The Core card interface signals are carried on J3 and J4, which are 200-pin (4-row) 1.27mm pitch connectors, SAMTEC type MOLC-150-31-S-Q (male, fitted to Core card). The interface signals are described in Table 7.2.

Signal	Direction (from Core Card)	Pull (on Core Card)	Pull (on Motherboard)	Description	
INTN[5:0]	Input	up	_	Interrupt signals to CPU.	
NMIN	Input	up	-	NMI signal to CPU	
CD[31:0]	I/O	-	-	CBUS data bus	
CCSN	Output	-	-	CBUS chip select	
CA[25:2]	Output	-	-	CBUS Address	
CRDN	Output	-	-	CBUS read strobe	
CWRN	Output	-	-	CBUS write strobe	
SCK	I/O	-	-	IIC bus clock	
SDA	I/O	-	-	IIC bus data	
CINTHIN	Output	-	up	Core card interrupt signal down to the moth- erboard (high priority).	
CINTLON	Output	-	up	Core card interrupt signal down to the moth- erboard (low priority).	
CREV[7:0]	Output	-	-	Indicates Core card revision as a 6.2 bit binary number	
BIGEND	Input	-	-	Sets CPU Endianness.	
EJTCK	Input	-	down		
EJTMS	Input	-	up		
EJTRSTN	Input	-	down		
EJTDI	Input	-	up		
EJTDO	Output	-	-		
EJDINT	Input	-	down		
JTGCPU	Input	-	down	Sets Core card's JTAG output to come direct from the CPU rather than also via other circuits.	
CGPI[7:0]	Output	-	-	General purpose output from Core which can be read from the motherboard.	
CGPO[7:0]	Input	-	-	General purpose input to Core which the motherboard can drive.	
CUU[15:0]	-	-	-	Unused pins, connected to wire-wrap area on both Core and the motherboard.	
CPRESN	Output	strong down	up	Wired to zero, to indicate presence of Core card.	
APRESN	Input	up	strong down	Wired to zero on the motherboard, to indicate attachment.	
D12V	Input	-	-	Twelve volt power for possible fan	

Table 7.2 Core Card Interface Signals

Signal	Direction (from Core Card)	Pull (on Core Card)	Pull (on Motherboard)	Description
D5V	Input	-	-	5 Volt power
D3V3	Input	-	-	3.3 Volt power
CPWR_OK	Input	-	-	Indicates that power on both 3V3 and 5V rails is up.
CORE_OK	Output	-	up	Indicates that Core is ready to come out of reset.
RSTN	Input	-	-	Global reset signal.
PCI_AD[31:0]	I/O	-	-	PCI bus
PCI_DEVSEL N	I/O	-	-	PCI bus
PCI_CBEN[3:0]	I/O	-	-	PCI bus
PCI_REQN	Output	-	-	PCI bus
PCI_GNTN	Input	-	-	PCI bus
PCI_SERRN	I/O	-	-	PCI bus
PCI_FRAMEN	I/O	-	-	PCI bus
PCI_IRDYN	I/O	-	-	PCI bus
PCI_IDSEL	I/O	-	-	PCI bus
PCI_PAR	I/O	-	-	PCI bus
PCI_STOPN	I/O	-	-	PCI bus
PCI_CLK	Input	-	-	PCI bus
PCI_TRDYN	I/O	-	-	PCI bus
PCI_LOCKN	I/O	-	-	PCI bus
PCI_PERRN	I/O	-	-	PCI bus

Table 7.2 Core Card Interface Signals (Continued)

7.2.1 J3 Connector

The pin list for the J3 connector is shown in Table 7.3.

Number	Name	Number	Name	Number	Name	Number	Name
1	CPWR_OK	51	GND	101	D3V3	151	SCK
2	JTGCPU	52	D5V	102	GND	152	CGPI4
3	CINTHIN	53	GND	103	GND	153	SDA
4	CORE_OK	54	CINTLON	104	GND	154	CGPO7
5	CGPI7	55	GND	105	D3V3	155	CGPO6
6	CD31	56	D5V	106	GND	156	CGPO5

Table 7.3 J3 Pin List

Malta[™] User's Manual, Revision 01.06

Number	Name	Number	Name	Number	Name	Number	Name
7	CD30	57	GND	107	GND	157	CGPO4
8	CD29	58	GND	108	GND	158	INTN5
9	CD28	59	GND	109	D3V3	159	INTN4
10	CD27	60	D5V	110	GND	160	INTN3
11	CD26	61	GND	111	CGPI0	161	INTN2
12	CD25	62	GND	112	GND	162	INTN1
13	CD24	63	GND	113	D3V3	163	INTN0
14	CD23	64	D5V	114	CA6	164	NMIN
15	CD22	65	GND	115	GND	165	CA10
16	CD21	66	GND	116	GND	166	CA9
17	CD20	67	GND	117	CA5	167	CA8
18	CD19	68	D5V	118	GND	168	CA7
19	CD18	69	GND	119	GND	169	CGPI3
20	CD17	70	GND	120	CA4	170	D12V
21	CD16	71	GND	121	D3V3	171	D12V
22	CD15	72	D5V	122	GND	172	CGPI2
23	CD14	73	GND	123	CA3	173	CPRESN
24	CD13	74	GND	124	GND	174	APRESN
25	CD12	75	GND	125	D3V3	175	BIGEND
26	CD11	76	D5V	126	CA2	176	CGPO3
27	CD10	77	GND	127	GND	177	CGPO2
28	CD9	78	GND	128	GND	178	CGPO1
29	CD8	79	GND	129	CA24	179	CGPO0
30	CD7	80	D5V	130	GND	180	CGPI1
31	CD6	81	GND	131	CA25	181	EJTCK
32	CD5	82	D5V	132	GND	182	GND
33	CD4	83	GND	133	D3V3	183	CREV0
34	CD3	84	GND	134	GND	184	EJTMS
35	CD2	85	GND	135	GND	185	CREV1
36	CD1	86	D5V	136	GND	186	EJTDI
37	CD0	87	GND	137	D3V3	187	CREV2
38	CA23	88	GND	138	GND	188	EJTDO
39	CWRN	89	GND	139	GND	189	CREV3
40	CRDN	90	D5V	140	GND	190	EJTRSTN
41	CCSN	91	GND	141	D3V3	191	CREV4
42	CGPI6	92	GND	142	GND	192	EJDINT
43	CGPI5	93	GND	143	GND	193	CREV5

Table 7.3 J3 Pin List (Continued)

Number	Name	Number	Name	Number	Name	Number	Name
44	CA22	94	D5V	144	GND	194	CREV6
45	CA21	95	GND	145	D3V3	195	CREV7
46	CA20	96	GND	146	GND	196	CA15
47	CA19	97	GND	147	GND	197	CA14
48	CA18	98	D5V	148	GND	198	CA13
49	CA17	99	GND	149	D3V3	199	CA12
50	CA16	100	CUU4	150	GND	200	GA11

Table 7.3 J3 Pin List (Continued)

7.2.2 J4 Connector

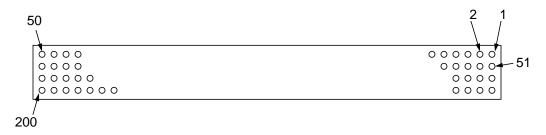
The pin list for the J4 connector is shown in Table 7.4.

Number	Name	Number	Name	Number	Name	Number	Name
1	RSTN	51	GND	101	D5V	151	GND
2	PCI_AD31	52	GND	102	GND	152	NC
3	PCI_AD30	53	GND	103	D3V3	153	GND
4	PCI_AD29	54	GND	104	D3V3	154	NC
5	PCI_AD28	55	GND	105	GND	155	GND
6	GND	56	GND	106	D5V	156	NC
7	GND	57	GND	107	GND	157	GND
8	PCI_CLK	58	GND	108	D3V3	158	NC
9	GND	59	GND	109	D3V3	159	GND
10	GND	60	GND	110	GND	160	NC
11	PCI_PAR	61	GND	111	D5V	161	GND
12	PCI_FRAME N	62	GND	112	GND	162	NC
13	PCI_IRDYN	63	GND	113	D3V3	163	GND
14	PCI_AD27	64	GND	114	D3V3	164	NC
15	PCI_AD26	65	GND	115	GND	165	GND
16	PCI_AD25	66	GND	116	D5V	166	NC
17	PCI_AD24	67	PCI_AD4	117	GND	167	GND
18	PCI_CBEN3	68	GND	118	D3V3	168	NC
19	PCI_CBEN2	69	GND	119	D3V3	169	GND
20	PCI_CBEN1	70	GND	120	GND	170	NC
21	PCI_CBEN0	71	GND	121	D5V	171	GND

Table 7.4 J4 Pin List

Malta[™] User's Manual, Revision 01.06

Number	Name	Number	Name	Number	Name	Number	Name
22	PCI_AD23	72	PCI_AD3	122	GND	172	NC
23	PCI_AD22	73	GND	123	D3V3	173	GND
24	PCI_AD21	74	GND	124	D3V3	174	NC
25	PCI_AD20	75	GND	125	GND	175	GND
26	PCI_AD19	76	GND	126	D5V	176	NC
27	PCI_AD18	77	PCI_AD2	127	GND	177	GND
28	PCI_AD17	78	GND	128	D3V3	178	NC
29	PCI_AD16	79	GND	129	D3V3	179	GND
30	PCI_TRDYN	80	GND	130	GND	180	NC
31	PCI_STOPN	81	GND	131	D5V	181	GND
32	PCI_LOCKN	82	PCI_AD1	132	GND	182	NC
33	PCI_IDSEL	83	GND	133	D3V3	183	GND
34	PCI_DEVSEL N	84	GND	134	D3V3	184	NC
35	PCI_AD15	85	GND	135	GND	185	GND
36	PCI_AD14	86	GND	136	D5V	186	NC
37	PCI_AD13	87	PCI_AD0	137	GND	187	GND
38	PCI_AD12	88	GND	138	D3V3	188	NC
39	PCI_AD11	89	GND	139	D3V3	189	GND
40	PCI_REQN	90	GND	140	GND	190	NC
41	PCI_GNTN	91	GND	141	D5V	191	GND
42	PCI_PERRN	92	GND	142	GND	192	NC
43	PCI_SERRN	93	GND	143	D3V3	193	GND
44	NC	94	GND	144	D3V3	194	NC
45	PCI_AD10	95	GND	145	GND	195	GND
46	PCI_AD9	96	GND	146	D5V	196	NC
47	PCI_AD8	97	GND	147	GND	197	GND
48	PCI_AD7	98	GND	148	D3V3	198	NC
49	PCI_AD6	99	GND	149	D3V3	199	GND
50	PCI_AD5	100	TMS	150	TDO	200	NC


Table 7.4 J4 Pin List (Continued)

7.3 Physical Design

The core card is 170mm x 100mm, and is mounted by pillars at each corner, plus 2 x 200-way (4 row x 25 pin) 1.27mm pitch connectors of type Samtec MOLC-150-31-x-Q. See Figure 7.4.

Pin numbering on these connectors is shown in Figure 7.3.

Figure 7.3 J3 and J4 Alignment

Note that one corner pillar (top left in figure) is placed offset from a symmetrical position, which is to guarantee the board cannot be inserted the wrong way around.

The connectors chosen are low-insertion force. You should be able to "lever" the card up by placing a screwdriver between the mounting pillars and the card.

The Core card is mounted at a height of 11mm over the motherboard when using the connectors given above. However, the existing placement of high components on the Atlas and Malta motherboards results in the height restrictions when placing components on the Core board, as shown in Table 7.5.

Location	Height Restrictions on Underside
Whole card (default)	No underside SMDs thicker than 6.5mm
Zone 1	No leaded components at all. No underside SMDs thicker than 1.2mm. (Note: this requirement applies only to Core cards that must be compatible with Atlas. Malta does not have this restriction.)
Zone 2	No underside SMDs thicker than 4.4mm
Zone 3	No underside SMDs thicker than 4.4mm

Table 7.5 Core Card	Component Height	Restrictions
---------------------	------------------	--------------

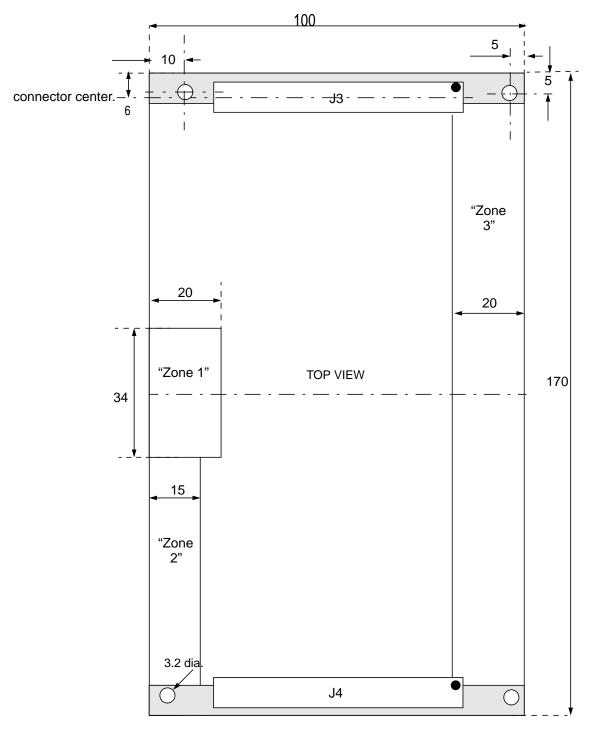


Figure 7.4 Core Card Template Layout

Shaded zone: no tracks on outer layers.

Appendix A

References

This appendix lists other documents available from MIPS Technologies, Inc. that are referenced elsewhere in this document. These documents may be included in the *\$MIPS_HOME/\$MIPS_CORE/doc* area of a typical *Core-Name* soft or hard core release, or in some cases may be available on the MIPS web site, http://www.mips.com.

- 1. PCI Local Bus Specification. Revision 2.2. December 18, 1998
- 2. MIPS YAMONTM User's Manual MIPS Document: MD00008
- 3. MIPS YAMON[™] Reference Manual MIPS Document: MD00009
- 4. MIPS EJTAG Specification. MIPS Document: MD00047
- 5. MIPS CoreFPGA[™] 4 Core Card User's Manual MIPS Document: MD00005
- 6. Intel 82371EB (PIIX4E) South Bridge chipset datasheets http://www.intel.com
- 7. Crystal CS4281 Audio controller Datasheet http://www.cirrus.com
- 8. AMD 79C973 Ethernet Controller Datasheet http://www.amd.com
- 9. SM_SC FDC37M817 Super I/O Controller datasheet.
- 10. Texas Instruments TI16C550C UART datasheet http://www.ti.com
- 11. Intel ATX Power Supply Design Guide. Version 0.9 www.intel.com
- 12. ATX Specification 2.03 http://www.formfactors.org
- 13. Design Guide for Intel ATX Motherboard I/O Implementations. Version 1.1 http://www.intel.com
- 14. Audio/Modem Riser Specification. Revision 1.01 http://www.intel.com
- 15. CF+ and CompactFlash Specification. Revision 1.4 http://www.compactflash.org
- 16. MIPS Malta[™] Schematics MIPS Document: MD00049

Revision History

Change bars (vertical lines) in the margins of this document indicate significant changes in the document since its last release. Change bars are removed for changes that are more than one revision old.

Revision	Date	Description
01.00	2000/08/29	Initial release.
01.01	2000/11/27	Updated Compact Flash connector information. Added definiton of connectors J30-31
01.02	2001/01/25	Layout updated
01.03	2001/06/13	Added Section 8 - Core card specification.
01.04	2001/07/31	Added 3.3V specification to CBUS spec.
01.05	2002/06/10	Fixed Figure 3 with reference to keyboard and mouse connectors swapped.
01.06	2007/07/08	Updated document with Template nB1.03.